Background: Exosomes are nanosized vesicles released from all cells into surrounding biofluids, including cancer cells, and represent a very promising direction in terms of minimally invasive approaches to early disease detection. They carry tumor-specific biological contents such as DNA, RNA, proteins, lipids, and sugars, as well as surface molecules that are able to pinpoint the cellular source. By the above criteria, exosomes may be stratified according to the presence of tissue and disease-specific signatures and, due to their stability in such biofluids as plasma and serum, they represent an indispensable source of vital clinical insights from liquid biopsies, even at the earliest stages of cancer. Therefore, our work aimed to isolate and characterize LCa patients’ derived exosomes from serum by Flow Cytometry in order to define a specific epitope signature exploitable for early diagnosis. Methods: Circulating exosomes were collected from serum collected from 30 LCa patients and 20 healthy volunteers by the use of antibody affinity method exploiting CD63 specific surface marker. Membrane epitopes were then characterized by Flow cytometry multiplex analysis and compared between LCa Patients and Healthy donors. Clinical data were also matched to obtain statistical correlation. Results: A distinct overexpression of CD1c, CD2, CD3, CD4, CD11c, CD14, CD20, CD44, CD56, CD105, CD146, and CD209 was identified in LCa patients compared to healthy controls, correlating positively with tumor presence. Conversely, CD24, CD31, and CD40, though not overexpressed in tumor samples, showed a significant correlation with nodal involvement in LCa patients (p < 0.01). Conclusion: This approach could allow us to set up a cost-effective and less invasive liquid biopsy protocol from a simple blood collection in order to early diagnose LCa and improve patients’ outcomes and quality of life. Graphical Abstract: (Figure presented.).

Exosomes multiplex profiling, a promising strategy for early diagnosis of laryngeal cancer

Bocchetti M.
;
2024-01-01

Abstract

Background: Exosomes are nanosized vesicles released from all cells into surrounding biofluids, including cancer cells, and represent a very promising direction in terms of minimally invasive approaches to early disease detection. They carry tumor-specific biological contents such as DNA, RNA, proteins, lipids, and sugars, as well as surface molecules that are able to pinpoint the cellular source. By the above criteria, exosomes may be stratified according to the presence of tissue and disease-specific signatures and, due to their stability in such biofluids as plasma and serum, they represent an indispensable source of vital clinical insights from liquid biopsies, even at the earliest stages of cancer. Therefore, our work aimed to isolate and characterize LCa patients’ derived exosomes from serum by Flow Cytometry in order to define a specific epitope signature exploitable for early diagnosis. Methods: Circulating exosomes were collected from serum collected from 30 LCa patients and 20 healthy volunteers by the use of antibody affinity method exploiting CD63 specific surface marker. Membrane epitopes were then characterized by Flow cytometry multiplex analysis and compared between LCa Patients and Healthy donors. Clinical data were also matched to obtain statistical correlation. Results: A distinct overexpression of CD1c, CD2, CD3, CD4, CD11c, CD14, CD20, CD44, CD56, CD105, CD146, and CD209 was identified in LCa patients compared to healthy controls, correlating positively with tumor presence. Conversely, CD24, CD31, and CD40, though not overexpressed in tumor samples, showed a significant correlation with nodal involvement in LCa patients (p < 0.01). Conclusion: This approach could allow us to set up a cost-effective and less invasive liquid biopsy protocol from a simple blood collection in order to early diagnose LCa and improve patients’ outcomes and quality of life. Graphical Abstract: (Figure presented.).
2024
Early diagnosis
Exosomes
Laryngeal cancer
Liquid biopsy
Membrane epitopes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/22408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact