Let rmax(n,d) be the maximum Waring rank for the set of *all* homogeneous polynomials of degree d>0 in n indeterminates with coefficients in an algebraically closed field of characteristic zero. To our knowledge, when n,d >= 3, the value of rmax(n,d) is known only for (n,d)=(3,3),(3,4),(3,5),(4,3). We prove that rmax(3,d)=d^2/4+O(d) as a consequence of the upper bound on rmax(3,d) given by the floor of (d^2+6d+1)/4.

The asymptotic leading term for maximum rank of ternary forms of a given degree

DE PARIS, ALESSANDRO
2016-01-01

Abstract

Let rmax(n,d) be the maximum Waring rank for the set of *all* homogeneous polynomials of degree d>0 in n indeterminates with coefficients in an algebraically closed field of characteristic zero. To our knowledge, when n,d >= 3, the value of rmax(n,d) is known only for (n,d)=(3,3),(3,4),(3,5),(4,3). We prove that rmax(3,d)=d^2/4+O(d) as a consequence of the upper bound on rmax(3,d) given by the floor of (d^2+6d+1)/4.
2016
Rank
Symmetric tensor
Waring problem
Algebra and Number Theory
Discrete Mathematics and Combinatorics
Geometry and Topology
Numerical Analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/9083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact