Discovery of novel antimicrobial agents against Pseudomonas aeruginosa able to inhibit bacterial growth as well as the resulting inflammatory response is a key goal in cystic fibrosis research. We report in this paper that a peptide nucleic acid (PNA3969) targeting the translation initiation region of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably, no effect on PAO1 induction of VEGF, GM-CSF and IL-17 was observed. Analogous experiments using a two base mis-match control PNA did not show such inhibition. Furthermore, no significant effects of the PNAs were seen on cell growth, apoptosis or secretome profile in uninfected IB3-1 cells (with the exception of a PNA-mediated up-regulation of PDGF, IL-17 and GM-CSF). Thus, we conclude that in cell culture an antimicrobial PNA against P. aeruginosa can inhibit the expression of pro-inflammatory cytokines otherwise induced by the infection. In particular, the effects of PNA-3969 on IL-8 gene expression are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection. © 2017
An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system
Bezzerri, V.;
2017-01-01
Abstract
Discovery of novel antimicrobial agents against Pseudomonas aeruginosa able to inhibit bacterial growth as well as the resulting inflammatory response is a key goal in cystic fibrosis research. We report in this paper that a peptide nucleic acid (PNA3969) targeting the translation initiation region of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably, no effect on PAO1 induction of VEGF, GM-CSF and IL-17 was observed. Analogous experiments using a two base mis-match control PNA did not show such inhibition. Furthermore, no significant effects of the PNAs were seen on cell growth, apoptosis or secretome profile in uninfected IB3-1 cells (with the exception of a PNA-mediated up-regulation of PDGF, IL-17 and GM-CSF). Thus, we conclude that in cell culture an antimicrobial PNA against P. aeruginosa can inhibit the expression of pro-inflammatory cytokines otherwise induced by the infection. In particular, the effects of PNA-3969 on IL-8 gene expression are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection. © 2017I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.