Several authors have shown better results in forecasting economicvariables by considering the sentiment values in their models. Few studies havefocused on the identification of the causes which explain opinions and beliefs. Inthis paper, we propose a methodological framework based on Distributed Lag (DL)models in order to identify dynamic causal effects in the case of temporalaggregation of sentiment values.

Temporal sentiment analysis with distributed lag models

CARANNANTE, MARIA;
2019-01-01

Abstract

Several authors have shown better results in forecasting economicvariables by considering the sentiment values in their models. Few studies havefocused on the identification of the causes which explain opinions and beliefs. Inthis paper, we propose a methodological framework based on Distributed Lag (DL)models in order to identify dynamic causal effects in the case of temporalaggregation of sentiment values.
2019
9788891915108
semantic polarity
social media
causality
dynamic models
textual data
semantic polarity
social media
causality
dynamic models
textual data
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/49859
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact