In this paper we determine the largest size of a complete (n,3)-arc in PG(2,11). By a computer-based exhaustive search that exploits the fact that an (n,3)-arc with n greater than or equal to 21 contains an are of size 7 and that uses projective equivalence properties, we show that the largest size of an (n, 3)-arc in PG(2,11) is 21 and that only two non-equivalent (21,3)-arcs exist.

Maximal (n, 3)-arcs in PG(2, 11)

MILANI, Alfredo;
1999-01-01

Abstract

In this paper we determine the largest size of a complete (n,3)-arc in PG(2,11). By a computer-based exhaustive search that exploits the fact that an (n,3)-arc with n greater than or equal to 21 contains an are of size 7 and that uses projective equivalence properties, we show that the largest size of an (n, 3)-arc in PG(2,11) is 21 and that only two non-equivalent (21,3)-arcs exist.
1999
Discrete Mathematics and Combinatorics
Theoretical Computer Science
Coding theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/43305
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact