In this paper we show, using a computer-based search exploiting relations of inclusion betweenarcs and (n, 3)-arcs and projective equivalence properties, that the largest size of a complete (n, 3)-arcin PG(2, 13) is 23 and that only seven non-equivalent (23, 3)-arcs exist. From this result, we deducethe non-existence of some [n, k, n−k]13 linear codes and bounds on the minimum distance of some[n, 3, d]13 linear codes. Moreover, we determine the spectrum of the sizes of the complete (n, 3)-arcsin PG(2, 13) and the classification of the smallest complete (n, 3)-arcs.

Maximal (n,3)-arcs in PG(2,13)

MILANI, Alfredo;
2005-01-01

Abstract

In this paper we show, using a computer-based search exploiting relations of inclusion betweenarcs and (n, 3)-arcs and projective equivalence properties, that the largest size of a complete (n, 3)-arcin PG(2, 13) is 23 and that only seven non-equivalent (23, 3)-arcs exist. From this result, we deducethe non-existence of some [n, k, n−k]13 linear codes and bounds on the minimum distance of some[n, 3, d]13 linear codes. Moreover, we determine the spectrum of the sizes of the complete (n, 3)-arcsin PG(2, 13) and the classification of the smallest complete (n, 3)-arcs.
2005
Projective spaces
(n
3)-arcs
NMDS codes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/43265
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact