This paper introduces Community Adaptive Search Engines (CASE) for multimedia object retrieval. CASE systems adapt their behaviour depending on the collective feedback of the users in order to eventually converge to the optimal answer. The community adaptive approach uses continuous user feedbacks on the lists of returned objects in order to filter out irrelevant objects and promote the relevant ones. An original dealer/opponent game model for CASE is proposed and an evolutionary approach to solve the CASE game is also presented. Experimental results shows convergence to the optimal solution with acceptable performance for real domain sizes.

Community Adaptive Search Engine

MILANI, Alfredo;
2009-01-01

Abstract

This paper introduces Community Adaptive Search Engines (CASE) for multimedia object retrieval. CASE systems adapt their behaviour depending on the collective feedback of the users in order to eventually converge to the optimal answer. The community adaptive approach uses continuous user feedbacks on the lists of returned objects in order to filter out irrelevant objects and promote the relevant ones. An original dealer/opponent game model for CASE is proposed and an evolutionary approach to solve the CASE game is also presented. Experimental results shows convergence to the optimal solution with acceptable performance for real domain sizes.
2009
INFORMATION RETRIEVAL
EVOLUTIONARY COMPUTATION
COLLECTIVE INTELLIGENCE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/43166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact