This paper introduces the Asynchronous Differential Evolution (ADE) scheme which generalizes the classical Differential Evolution (DE) approach along the dimension of Synchronization Degree (SD). SD regulates the synchrony of the evolution of the current population, i.e. how fast it is replaced by the newly generated population. The definition of the ADE scheme is given and different synchronization strategies are discussed. The introduction of SD parameter allows the tuning of the differential evolution from a completely asynchronous behavior to a super-synchronous behavior. Experiments show that a low SD generally improves the convergence speed and the convergence probability with respect to the classical synchronous DE. Moreover the ordering strategies introduced in ADE seem to improve the performances of the only already known asynchronous variant of DE (the Dynamical Differential Evolution Strategy)

Asynchronous differential evolution

MILANI, Alfredo;
2010-01-01

Abstract

This paper introduces the Asynchronous Differential Evolution (ADE) scheme which generalizes the classical Differential Evolution (DE) approach along the dimension of Synchronization Degree (SD). SD regulates the synchrony of the evolution of the current population, i.e. how fast it is replaced by the newly generated population. The definition of the ADE scheme is given and different synchronization strategies are discussed. The introduction of SD parameter allows the tuning of the differential evolution from a completely asynchronous behavior to a super-synchronous behavior. Experiments show that a low SD generally improves the convergence speed and the convergence probability with respect to the classical synchronous DE. Moreover the ordering strategies introduced in ADE seem to improve the performances of the only already known asynchronous variant of DE (the Dynamical Differential Evolution Strategy)
2010
978-1-4244-6909-3
Asynchronous behavior
Convergence speed
Differential Evolution
Differential evolution strategy
Ordering strategy
Super-synchronous
Synchronization strategies
Artificial intelligence
Evolutionary algorithms
Asynchronous behavior
Convergence speed
Differential Evolution
Differential evolution strategy
Ordering strategy
Super-synchronous
Synchronization strategies
Artificial intelligence
Evolutionary algorithms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/43144
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact