This work introduces a new class of group similarity where different measures are parameterized with respect to a basic similarity defined on the elements of the sets. Group similarity measures are of great interest for many application domains, since they can be used to evaluate similarity of objects in term of the similarity of the associated sets, for example in multimedia collaborative repositories where images, videos and other multimedia are annotated with meaningful tags whose semantics reflects the collective knowledge of a community of users. The group similarity classes are formally defined and their properties are described and discussed. Experimental results, obtained in the domain of images semantic similarity by using search engine based tag similarity, show the adequacy of the proposed approach in order to reflect the collective notion of semantic similarity.

Set similarity measures for images based on collective knowledge

MILANI, Alfredo
2015-01-01

Abstract

This work introduces a new class of group similarity where different measures are parameterized with respect to a basic similarity defined on the elements of the sets. Group similarity measures are of great interest for many application domains, since they can be used to evaluate similarity of objects in term of the similarity of the associated sets, for example in multimedia collaborative repositories where images, videos and other multimedia are annotated with meaningful tags whose semantics reflects the collective knowledge of a community of users. The group similarity classes are formally defined and their properties are described and discussed. Experimental results, obtained in the domain of images semantic similarity by using search engine based tag similarity, show the adequacy of the proposed approach in order to reflect the collective notion of semantic similarity.
2015
978-3-31-921403-0
Collective knowledge
Data mining
Group similarity
Image retrieval
Knowledge discovery
Semantic distance
Theoretical Computer Science
Computer Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/43021
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact