In the framework of Adversarial Machine Learning, several detection and protection techniques are used to characterize specific attack-defense scenarios. In this paper, we present universal, unrestricted black-box adversarial attacks based on a multi-objective nested evolutionary algorithm able to incorporate the detection rate and a measure of image quality into the attack building phase.

Combining Attack Success Rate and Detection Rate for effective Universal Adversarial Attacks

Milani A.
;
2021-01-01

Abstract

In the framework of Adversarial Machine Learning, several detection and protection techniques are used to characterize specific attack-defense scenarios. In this paper, we present universal, unrestricted black-box adversarial attacks based on a multi-objective nested evolutionary algorithm able to incorporate the detection rate and a measure of image quality into the attack building phase.
2021
978-2-87-587082-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/42826
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact