The cross-talk between the innate and adaptive immune response represents the first defense weapon against the threat of pathogens. Substantial evidence has shown a relationship between immune phenotype lymphocytes and COVID-19 disease severity and/or implication in susceptibility to SARS-CoV-2 infection. Recently, belonging to ABO blood groups has been investigated as a correlation factor to COVID-19 disease. This pilot study investigated lymphocyte typing in a cohort of blood donors to understand the underlying mechanism in SARS-CoV-2 infection linked to the blood group. The study cohort consisted of 20–64-year-old subjects, without comorbidities, from both sexes, who were COVID-19 vaccinated with previous or no infection history. Whole blood samples, collected at A.O.R.N. Sant’Anna and San Sebastiano Hospital (Campania Region), were processed by multiparametric cytofluorimetric assay, to characterize CD4+ helper and CD8+ cytotoxic T cell CD3+ subpopulations. The CD45RA, CCR7, CD27, CD28, CD57 and PD-1 markers were investigated to delineate the peripheral T-cell maturation stages. Differences were detected in ABO blood types in CD3+, CD4+ gated on CD3+, CD8+ and CD8+ gated on CD3+ percentage. These results contribute to identifying a memory cell “identikit” profile in COVID-19 disease, thus leading to a useful tool in precision medicine.

Monitoring of Immune Memory by Phenotypical Lymphocyte Subsets Identikit: An Observational Study in a Blood Donors’ Cohort

Caponio V. C. A.;Ballini A.
2024-01-01

Abstract

The cross-talk between the innate and adaptive immune response represents the first defense weapon against the threat of pathogens. Substantial evidence has shown a relationship between immune phenotype lymphocytes and COVID-19 disease severity and/or implication in susceptibility to SARS-CoV-2 infection. Recently, belonging to ABO blood groups has been investigated as a correlation factor to COVID-19 disease. This pilot study investigated lymphocyte typing in a cohort of blood donors to understand the underlying mechanism in SARS-CoV-2 infection linked to the blood group. The study cohort consisted of 20–64-year-old subjects, without comorbidities, from both sexes, who were COVID-19 vaccinated with previous or no infection history. Whole blood samples, collected at A.O.R.N. Sant’Anna and San Sebastiano Hospital (Campania Region), were processed by multiparametric cytofluorimetric assay, to characterize CD4+ helper and CD8+ cytotoxic T cell CD3+ subpopulations. The CD45RA, CCR7, CD27, CD28, CD57 and PD-1 markers were investigated to delineate the peripheral T-cell maturation stages. Differences were detected in ABO blood types in CD3+, CD4+ gated on CD3+, CD8+ and CD8+ gated on CD3+ percentage. These results contribute to identifying a memory cell “identikit” profile in COVID-19 disease, thus leading to a useful tool in precision medicine.
2024
ABO blood groups
COVID-19
effector memory T cells
immune system
lymphocyte typing
lymphocytes B
lymphocytes T-CD4+
lymphocytes T-CD8
memory cells’ profile
NAÏVE T cells
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/40287
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact