Charcot Neuro-Osteoarthropathy (CNO) is a debilitating complication predominantly affecting individuals with diabetes and peripheral neuropathy. Radiological assessment plays a central role in the diagnosis, staging, and management of CNO. While plain radiographs remain the cornerstone of initial imaging, advanced modalities such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) have significantly enhanced diagnostic accuracy. Nuclear imaging, including bone scintigraphy, radiolabeled leukocyte scans, and FDG-PET/CT, offers additional diagnostic precision in complex cases, especially when differentiating CNO from infections or evaluating patients with metal implants. This review underscores the importance of a multimodal imaging approach suited to the clinical stage and specific diagnostic challenges of CNO. It highlights the critical need for standardized imaging protocols and integrated diagnostic algorithms that combine radiological, clinical, and laboratory findings. Advances in imaging biomarkers and novel techniques such as diffusion-weighted MRI hold promise for improving early detection and monitoring treatment efficacy. In conclusion, the effective management of CNO in diabetic foot patients requires a multidisciplinary approach that integrates advanced imaging technologies with clinical expertise. Timely and accurate diagnosis not only prevents debilitating complications but also facilitates the development of personalized therapeutic strategies, ultimately improving patient outcomes.
Radiological Assessment of Charcot Neuro-Osteoarthropathy in Diabetic Foot: A Narrative Review
Greco T.;
2025-01-01
Abstract
Charcot Neuro-Osteoarthropathy (CNO) is a debilitating complication predominantly affecting individuals with diabetes and peripheral neuropathy. Radiological assessment plays a central role in the diagnosis, staging, and management of CNO. While plain radiographs remain the cornerstone of initial imaging, advanced modalities such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) have significantly enhanced diagnostic accuracy. Nuclear imaging, including bone scintigraphy, radiolabeled leukocyte scans, and FDG-PET/CT, offers additional diagnostic precision in complex cases, especially when differentiating CNO from infections or evaluating patients with metal implants. This review underscores the importance of a multimodal imaging approach suited to the clinical stage and specific diagnostic challenges of CNO. It highlights the critical need for standardized imaging protocols and integrated diagnostic algorithms that combine radiological, clinical, and laboratory findings. Advances in imaging biomarkers and novel techniques such as diffusion-weighted MRI hold promise for improving early detection and monitoring treatment efficacy. In conclusion, the effective management of CNO in diabetic foot patients requires a multidisciplinary approach that integrates advanced imaging technologies with clinical expertise. Timely and accurate diagnosis not only prevents debilitating complications but also facilitates the development of personalized therapeutic strategies, ultimately improving patient outcomes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


