Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by T-cells against the insulin-producing islet β-cells, resulting in a marked loss of β-cell mass and function. Although a genetic predisposal increases susceptibility, the role of epigenetic and environmental factors seems to be much more significant. A dysbiotic gut microbial profile has been associated with T1D patients. Moreover, new evidence propose that perturbation in gut microbiota may influence the T1D onset and progression. One of the prominent features in clinically silent phase before the onset of T1D is the presence of a microbiota characterized by low numbers of commensals butyrate producers, thus negatively influencing the gut permeability. The loss of gut permeability leads to the translocation of microbes and microbial metabolites and could lead to the activation of immune cells. Moreover, microbiota-based therapies to slow down disease progression or reverse T1D have shown promising results. Starting from this evidence, the correction of dysbiosis in early life of genetically susceptible individuals could help in promoting immune tolerance and thus in reducing the autoantibodies production. This review summarizes the associations between gut microbiota and T1D for future therapeutic perspectives and other exciting areas of research.

Pathophysiology of Type 1 Diabetes and Gut Microbiota Role

Putignani, Lorenza
Conceptualization
2022-01-01

Abstract

Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by T-cells against the insulin-producing islet β-cells, resulting in a marked loss of β-cell mass and function. Although a genetic predisposal increases susceptibility, the role of epigenetic and environmental factors seems to be much more significant. A dysbiotic gut microbial profile has been associated with T1D patients. Moreover, new evidence propose that perturbation in gut microbiota may influence the T1D onset and progression. One of the prominent features in clinically silent phase before the onset of T1D is the presence of a microbiota characterized by low numbers of commensals butyrate producers, thus negatively influencing the gut permeability. The loss of gut permeability leads to the translocation of microbes and microbial metabolites and could lead to the activation of immune cells. Moreover, microbiota-based therapies to slow down disease progression or reverse T1D have shown promising results. Starting from this evidence, the correction of dysbiosis in early life of genetically susceptible individuals could help in promoting immune tolerance and thus in reducing the autoantibodies production. This review summarizes the associations between gut microbiota and T1D for future therapeutic perspectives and other exciting areas of research.
2022
butyrate production
dysbiosis
gut microbiome
insulin resistance
intestine permeability
type 1 diabetes (T1D)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/31247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 50
social impact