During stereotaxic neurosurgery for deep brain stimulation in Parkinson's disease (PD), we performed a microdialysis study of the extracellular amino acid (aspartate, glutamate, glycine, and GABA) concentrations. Their levels were measured in the GPe/GPi of five and in the STN of four different PD patients, after prolonged therapy washout. The results show stable values of basal release of the examined amino acids within 1 h. The basal levels of GABA in "OFF" state were significantly higher in the GPi than in the GPe. Acute apomorphine administration, while inducing clinical amelioration and electrophysiological changes in the examined nuclei, did not change amino acid concentrations. This result could be related to a limited microdialysis ability to detect subtle changes in amino acid spontaneous release. Alternatively, it could suggest that dopaminergic receptors located in the output nuclei, possibly present also in humans, might mediate the acute apomorphine clinical effects, not involving amino acid changes along the direct and/or indirect pathway. © 2001 Academic Press.

Microdialysis in Parkinsonian patient basal ganglia: Acute apomorphine-induced clinical and electrophysiological effects not paralleled by changes in the release of neuroactive amino acids

Bassi A.;
2001-01-01

Abstract

During stereotaxic neurosurgery for deep brain stimulation in Parkinson's disease (PD), we performed a microdialysis study of the extracellular amino acid (aspartate, glutamate, glycine, and GABA) concentrations. Their levels were measured in the GPe/GPi of five and in the STN of four different PD patients, after prolonged therapy washout. The results show stable values of basal release of the examined amino acids within 1 h. The basal levels of GABA in "OFF" state were significantly higher in the GPi than in the GPe. Acute apomorphine administration, while inducing clinical amelioration and electrophysiological changes in the examined nuclei, did not change amino acid concentrations. This result could be related to a limited microdialysis ability to detect subtle changes in amino acid spontaneous release. Alternatively, it could suggest that dopaminergic receptors located in the output nuclei, possibly present also in humans, might mediate the acute apomorphine clinical effects, not involving amino acid changes along the direct and/or indirect pathway. © 2001 Academic Press.
2001
Apomorphine
Basal ganglia
Electrophysiology
Endogenous amino acids
Microdialysis
Neurosurgery
Parkinson's disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/29208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact