This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts, specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and overfitting problem resolution.

A Comparative Analysis of the Bayesian Regularization and Levenberg–Marquardt Training Algorithms in Neural Networks for Small Datasets: A Metrics Prediction of Neolithic Laminar Artefacts

Mastrogiuseppe, Marco;
2024-01-01

Abstract

This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts, specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and overfitting problem resolution.
2024
archaeological data
Bayesian regularization
Levenberg–Marquardt
metrics prediction
neural network
training algorithms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/27845
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact