Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.

A Survey on Progressive Visualization

Angelini M.;
2024-01-01

Abstract

Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.
2024
Progressive visual analytics
progressive visualization
state-of-the-art report
survey
taxonomy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/26041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact