Background: Malignant mesothelioma (MM) is an aggressive tumor that is resistant to conventional modes of treatment with chemotherapy, surgery or radiation. Research into the molecular pathways involved in the development of MM should yield information that will guide therapeutic decisions. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are involved in the carcinogenesis of MM. Combination of COX-2 and EGFR inhibitors, therefore, could be an effective strategy for reducing cell growth in those lines expressing the two molecular markers.Results: In order to verify the effect of COX-2 and EGFR inhibitors, five MM cell lines NCI-2452, MPP89, Ist-Mes-1, Ist-Mes-2 and MSTO-211 were characterized for COX-2 and EGFR and then treated with respective inhibitors (rofecoxib and gefitinib) alone and in combination. Only MPP89, Ist-Mes-1 and Ist-Mes-2 were sensitive to rofecoxib and showed growth-inhibition upon gefitinib treatment. The combination of two drugs demonstrated synergistic effects on cell killing only in Ist-Mes-2, the cell line that was more sensitive to gefitinib and rofecoxib alone. Down-regulation of COX-2, EGFR, p-EGFR and up-regulation of p21 and p27 were found in Ist-Mes-2, after treatment with single agents and in combination. In contrast, association of two drugs resulted in antagonistic effect in Ist-Mes-1 and MPP89. In these cell lines after rofecoxib exposition, only an evident reduction of p-AKT was observed. No change in p-AKT in Ist-Mes-1 and MPP89 was observed after treatment with gefitinib alone and in combination with rofecoxib.Conclusions: Gefitinib and rofecoxib exert cell type-specific effects that vary between different MM cells. Total EGFR expression and downstream signalling does not correlate with gefitinib sensitivity. These data suggest that the effect of gefitinib can be potentiated by rofecoxib in MM cell lines where AKT is not activated. © 2010 Stoppoloni et al; licensee BioMed Central Ltd.
Synergistic effect of gefitinib and rofecoxib in mesothelioma cells
BALDI, Alfonso;
2010-01-01
Abstract
Background: Malignant mesothelioma (MM) is an aggressive tumor that is resistant to conventional modes of treatment with chemotherapy, surgery or radiation. Research into the molecular pathways involved in the development of MM should yield information that will guide therapeutic decisions. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are involved in the carcinogenesis of MM. Combination of COX-2 and EGFR inhibitors, therefore, could be an effective strategy for reducing cell growth in those lines expressing the two molecular markers.Results: In order to verify the effect of COX-2 and EGFR inhibitors, five MM cell lines NCI-2452, MPP89, Ist-Mes-1, Ist-Mes-2 and MSTO-211 were characterized for COX-2 and EGFR and then treated with respective inhibitors (rofecoxib and gefitinib) alone and in combination. Only MPP89, Ist-Mes-1 and Ist-Mes-2 were sensitive to rofecoxib and showed growth-inhibition upon gefitinib treatment. The combination of two drugs demonstrated synergistic effects on cell killing only in Ist-Mes-2, the cell line that was more sensitive to gefitinib and rofecoxib alone. Down-regulation of COX-2, EGFR, p-EGFR and up-regulation of p21 and p27 were found in Ist-Mes-2, after treatment with single agents and in combination. In contrast, association of two drugs resulted in antagonistic effect in Ist-Mes-1 and MPP89. In these cell lines after rofecoxib exposition, only an evident reduction of p-AKT was observed. No change in p-AKT in Ist-Mes-1 and MPP89 was observed after treatment with gefitinib alone and in combination with rofecoxib.Conclusions: Gefitinib and rofecoxib exert cell type-specific effects that vary between different MM cells. Total EGFR expression and downstream signalling does not correlate with gefitinib sensitivity. These data suggest that the effect of gefitinib can be potentiated by rofecoxib in MM cell lines where AKT is not activated. © 2010 Stoppoloni et al; licensee BioMed Central Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.