Cyclins are members of family of proteins involved in the cell cycle regulation. They are regulatory subunits of complexes with proteins called cyclin-dependent kinases (CDKs). There are three forms of cyclin T: cyclin T1, cyclin T2a, and T2b. All cyclin T contain an N-terminal "cyclin homology box," the most conserved region among different members of the cyclin family that serves to bind CDK9. In addition to the N-terminal cyclin domain, cyclin T contains a putative coiled-coil motif, a His-rich motif, and a C-terminal PEST sequence. The CDK9/cyclin T complex is able to activate gene expression in a catalytic-dependent manner, phosphorylating the carboxy-terminal domain (CTD) of RNA polymerase II. In addition, only cyclin T1 supports interactions between Tat and TAR. The interaction of Tat with cyclin T1 alters the conformation of Tat to enhance the affinity and specificity of the Tat:TAR interaction. On the other hand, CDK9/cyclin T2 complexes are involved in the regulation of terminal differentiation in muscle cells. © 2002 Wiley-Liss, Inc.

Cyclin T: Three forms for different roles in physiological and pathological functions

BALDI, Alfonso;
2003-01-01

Abstract

Cyclins are members of family of proteins involved in the cell cycle regulation. They are regulatory subunits of complexes with proteins called cyclin-dependent kinases (CDKs). There are three forms of cyclin T: cyclin T1, cyclin T2a, and T2b. All cyclin T contain an N-terminal "cyclin homology box," the most conserved region among different members of the cyclin family that serves to bind CDK9. In addition to the N-terminal cyclin domain, cyclin T contains a putative coiled-coil motif, a His-rich motif, and a C-terminal PEST sequence. The CDK9/cyclin T complex is able to activate gene expression in a catalytic-dependent manner, phosphorylating the carboxy-terminal domain (CTD) of RNA polymerase II. In addition, only cyclin T1 supports interactions between Tat and TAR. The interaction of Tat with cyclin T1 alters the conformation of Tat to enhance the affinity and specificity of the Tat:TAR interaction. On the other hand, CDK9/cyclin T2 complexes are involved in the regulation of terminal differentiation in muscle cells. © 2002 Wiley-Liss, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/24301
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? ND
social impact