Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17β-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.

Dissecting the 17β-estradiol pathways necessary for neuroglobin anti-apoptotic activity in breast cancer

Cipolletti, Manuela;
2017-01-01

Abstract

Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17β-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.
2017
Breast cancer cells
Estrogen
Estrogen receptor alpha
Neuroglobin
Signal pathways
Physiology
Clinical Biochemistry
Cell Biology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/22074
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact