The liverwort Lunularia cruciata was collected from the town of Acerra, in the heart of the so-called ‘Land of Fires’ a large area in the eastern part of Campania region of Italy affected by burning of waste and fraudulent dumping and one of the vertices of the “Italian Triangle of Death” so said for the high incidence and mortality from tumors. The data obtained from these samples were compared with samples collected in two other sites representing two different environmental conditions. The soil below the samples, and gametophytes, were collected and analyzed for the concentration of Al, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V. DNA damage, Reactive Oxygen Species production and localization, activity of antioxidant enzymes and presence of chelating molecules were investigated. All biomarkers provided an answer closely related to the pollution conditions at the 3 sites. We discuss the data considering the possibility of using these biological changes as environmental pollution biomarkers. Finally, it is underlined the importance of phytochelatins due to of their specificity for metal pollution.
Biological effects from environmental pollution by toxic metals in the “land of fires” (Italy) assessed using the biomonitor species Lunularia cruciata L. (Dum)
Maresca V.;
2020-01-01
Abstract
The liverwort Lunularia cruciata was collected from the town of Acerra, in the heart of the so-called ‘Land of Fires’ a large area in the eastern part of Campania region of Italy affected by burning of waste and fraudulent dumping and one of the vertices of the “Italian Triangle of Death” so said for the high incidence and mortality from tumors. The data obtained from these samples were compared with samples collected in two other sites representing two different environmental conditions. The soil below the samples, and gametophytes, were collected and analyzed for the concentration of Al, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V. DNA damage, Reactive Oxygen Species production and localization, activity of antioxidant enzymes and presence of chelating molecules were investigated. All biomarkers provided an answer closely related to the pollution conditions at the 3 sites. We discuss the data considering the possibility of using these biological changes as environmental pollution biomarkers. Finally, it is underlined the importance of phytochelatins due to of their specificity for metal pollution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.