Bis-(3-bromo-4-hydroxy)benzylidene cyclic compounds have been reported by us as epigenetic multiple ligands, but different substitutions at the two wings provided analogues with selective inhibition. Since the 1-benzyl-3,5-bis((E)-3-bromobenzylidene)piperidin-4-one 3 displayed dual p300/EZH2 inhibition joined to cancer-selective cell death in a panel of tumor cells and in in vivo xenograft models, we prepared a series of bis((E)-2-bromobenzylidene) cyclic compounds 4a–n to test in biochemical (p300, PCAF, SIRT1/2, EZH2, and CARM1) and cellular (NB4, U937, MCF-7, SH-SY5Y) assays. The majority of 4a–n exhibited potent dual p300 and CARM1 inhibition, sometimes reaching the submicromolar level, and induction of apoptosis mainly in the tested leukemia cell lines. The most effective compounds in both enzyme and cellular assays carried a 4-piperidone moiety and a methyl (4d), benzyl (4e), or acyl (4k–m) substituent at N1 position. Elongation of the benzyl portion to 2-phenylethyl (4f) and 3-phenylpropyl (4g) decreased the potency of compounds at both the enzymatic and cellular levels, but the activity was promptly restored by introduction of a ketone group into the phenylalkyl substituent (4h–j). Western blot analyses performed in NB4 and MCF-7 cells on selected compounds confirmed their inhibition of p300 and CARM1 through decrease of the levels of acetyl-H3 and acetyl-H4, marks for p300 inhibition, and of H3R17me2, mark for CARM1 inhibition.

Properly Substituted Cyclic Bis-(2-bromobenzylidene) Compounds Behaved as Dual p300/CARM1 Inhibitors and Induced Apoptosis in Cancer Cells

Stefano Tomassi
Writing – Original Draft Preparation
;
2020-01-01

Abstract

Bis-(3-bromo-4-hydroxy)benzylidene cyclic compounds have been reported by us as epigenetic multiple ligands, but different substitutions at the two wings provided analogues with selective inhibition. Since the 1-benzyl-3,5-bis((E)-3-bromobenzylidene)piperidin-4-one 3 displayed dual p300/EZH2 inhibition joined to cancer-selective cell death in a panel of tumor cells and in in vivo xenograft models, we prepared a series of bis((E)-2-bromobenzylidene) cyclic compounds 4a–n to test in biochemical (p300, PCAF, SIRT1/2, EZH2, and CARM1) and cellular (NB4, U937, MCF-7, SH-SY5Y) assays. The majority of 4a–n exhibited potent dual p300 and CARM1 inhibition, sometimes reaching the submicromolar level, and induction of apoptosis mainly in the tested leukemia cell lines. The most effective compounds in both enzyme and cellular assays carried a 4-piperidone moiety and a methyl (4d), benzyl (4e), or acyl (4k–m) substituent at N1 position. Elongation of the benzyl portion to 2-phenylethyl (4f) and 3-phenylpropyl (4g) decreased the potency of compounds at both the enzymatic and cellular levels, but the activity was promptly restored by introduction of a ketone group into the phenylalkyl substituent (4h–j). Western blot analyses performed in NB4 and MCF-7 cells on selected compounds confirmed their inhibition of p300 and CARM1 through decrease of the levels of acetyl-H3 and acetyl-H4, marks for p300 inhibition, and of H3R17me2, mark for CARM1 inhibition.
2020
epigenetics, histone acetylation, histone methylation, drug discovery, multi-target agents
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/21661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact