: Skeletal muscle is a postmitotic tissue composed of contractile myofibers that are oriented and connected to different layers of connective tissue. Nevertheless, adult muscle fibers retain the capacity to regenerate in response to damage, activating the classical muscle stem cell compartment, namely, satellite cells (SCs), which are mitotically quiescent cells until required for growth or repair and are localized between the basal lamina and sarcolemma of myofibers. The transition of SCs from the quiescent state toward activation, commitment, and differentiation involves the genetic and epigenetic adaptation to novel biological functions, entailing dynamic changes in the protein expression profile. Interestingly, some of the activities and signaling regulating proliferation, commitment, differentiation, and survival/apoptosis of satellite cells have been also partially recapitulated in vitro, taking advantage of robust markers, reliable techniques, and reproducible protocols. Over the years, different techniques of muscular cell culture have been designed including primary cultures from embryonic or postnatal muscle, myogenic cell line, and three-dimensional (3D) skeletal muscle construct. Typical two-dimensional (2D) muscle cell culture cannot fully recapitulate the complexity of living muscle tissues, restricting their usefulness for physiological studies. The development of functional 3D culture models represents a valid alternative to overcome the limitations of already available in vitro model, increasing our understanding of the roles played by the various cell types and how they interact. In this chapter, the development of bidimensional and three-dimensional cell cultures have been described, improving the technical aspect of satellite cell isolation, the best culture-based conditions for muscle cell growth and differentiation, and the procedures required to develop a three-dimensional skeletal muscle construct.
Generation of Bidimensional and Three-Dimensional Muscle Culture Systems
Cosentino, Marianna;
2024-01-01
Abstract
: Skeletal muscle is a postmitotic tissue composed of contractile myofibers that are oriented and connected to different layers of connective tissue. Nevertheless, adult muscle fibers retain the capacity to regenerate in response to damage, activating the classical muscle stem cell compartment, namely, satellite cells (SCs), which are mitotically quiescent cells until required for growth or repair and are localized between the basal lamina and sarcolemma of myofibers. The transition of SCs from the quiescent state toward activation, commitment, and differentiation involves the genetic and epigenetic adaptation to novel biological functions, entailing dynamic changes in the protein expression profile. Interestingly, some of the activities and signaling regulating proliferation, commitment, differentiation, and survival/apoptosis of satellite cells have been also partially recapitulated in vitro, taking advantage of robust markers, reliable techniques, and reproducible protocols. Over the years, different techniques of muscular cell culture have been designed including primary cultures from embryonic or postnatal muscle, myogenic cell line, and three-dimensional (3D) skeletal muscle construct. Typical two-dimensional (2D) muscle cell culture cannot fully recapitulate the complexity of living muscle tissues, restricting their usefulness for physiological studies. The development of functional 3D culture models represents a valid alternative to overcome the limitations of already available in vitro model, increasing our understanding of the roles played by the various cell types and how they interact. In this chapter, the development of bidimensional and three-dimensional cell cultures have been described, improving the technical aspect of satellite cell isolation, the best culture-based conditions for muscle cell growth and differentiation, and the procedures required to develop a three-dimensional skeletal muscle construct.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.