Background: Reverse total shoulder arthroplasty (RSA) significantly impacts deltoid length, tension, and structure. Studies have extensively investigated various modifications in deltoid characteristics, such as perfusion, elasticity, caliber, histological changes, and strength post-RSA. However, to date, there is a notable absence of research evaluating changes in bone mineral density (BMD) at the deltoid muscle origin after the RSA procedure. Methods: A retrospective analysis of a consecutive series of RSAs performed between May 2011 and May 2022 was conducted. Inclusion criteria comprised primary RSAs with both preoperative and last follow-up shoulder CT scans and a minimum follow-up of 12 months. Trabecular attenuation measured in Hounsfield units (HU) was calculated using a rapid region-of-interest (ROI) method. BMD analysis involved segmenting three ROIs in both pre- and postoperative CT scans of each patient: the acromion, clavicle, and spine of the scapula. Results: A total of 44 RSAs in 43 patients, comprising 29 women and 14 men, were included in this study. The mean follow-up duration was 49 ± 22.64 months. Significant differences were observed between preoperative and postoperative HU values in all analyzed regions. Specifically, BMD increased in the acromion and spine, while it decreased in the clavicle (p-values 0.0019, <0.0001, and 0.0088, respectively). Conclusions: The modifications in shoulder biomechanics and, consequently, deltoid tension post-implantation result in discernible variations in bone quality within the analyzed regions. This study underscores the importance of thorough preoperative patient planning. By utilizing CT images routinely obtained before reverse shoulder replacement surgery, patients at high risk for fractures of the acromion, clavicle, and scapular spine can be identified.
Bone Density Changes at the Origin of the Deltoid Muscle following Reverse Shoulder Arthroplasty
Baldari A.;Franceschi F.
2024-01-01
Abstract
Background: Reverse total shoulder arthroplasty (RSA) significantly impacts deltoid length, tension, and structure. Studies have extensively investigated various modifications in deltoid characteristics, such as perfusion, elasticity, caliber, histological changes, and strength post-RSA. However, to date, there is a notable absence of research evaluating changes in bone mineral density (BMD) at the deltoid muscle origin after the RSA procedure. Methods: A retrospective analysis of a consecutive series of RSAs performed between May 2011 and May 2022 was conducted. Inclusion criteria comprised primary RSAs with both preoperative and last follow-up shoulder CT scans and a minimum follow-up of 12 months. Trabecular attenuation measured in Hounsfield units (HU) was calculated using a rapid region-of-interest (ROI) method. BMD analysis involved segmenting three ROIs in both pre- and postoperative CT scans of each patient: the acromion, clavicle, and spine of the scapula. Results: A total of 44 RSAs in 43 patients, comprising 29 women and 14 men, were included in this study. The mean follow-up duration was 49 ± 22.64 months. Significant differences were observed between preoperative and postoperative HU values in all analyzed regions. Specifically, BMD increased in the acromion and spine, while it decreased in the clavicle (p-values 0.0019, <0.0001, and 0.0088, respectively). Conclusions: The modifications in shoulder biomechanics and, consequently, deltoid tension post-implantation result in discernible variations in bone quality within the analyzed regions. This study underscores the importance of thorough preoperative patient planning. By utilizing CT images routinely obtained before reverse shoulder replacement surgery, patients at high risk for fractures of the acromion, clavicle, and scapular spine can be identified.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.