The regioselective functionalization of four- and six-membered cyclic sulfones was investigated using a lithiation/electrophile trapping strategy. The protocol features an interesting eco-compatibility profile because of the use of 2-MeTHF as a solvent (more eco-friendly than other organic solvents) and n-hexyllithiumas a lithiating agent safer than other alkyllithium compounds. Several derivatives were prepared with different stereochemistry and substitution patterns. A number of selected derivatives, spanning a range of 5 log P units, were characterized for their lipophilicity through RP-HPLC. A good linear correlation,with a slope close to 1.0, was observed between the experimentally determined RP-HPLC lipophilicity parameters (log k’w) and calculated log P (clog P) values, whereas a systematic difference in absolute values between the chromatographic parameters and in silico lipophilicity descriptors can be attributed mainly to silanophilic interactions between the H-bond acceptor SO2 group and free silanol groups on silica-based C18 columns, which results in increased retention times.

A greener and efficient access to substituted four- and six-membered sulfur-bearing heterocycles

CARLUCCI, CLAUDIA;
2017-01-01

Abstract

The regioselective functionalization of four- and six-membered cyclic sulfones was investigated using a lithiation/electrophile trapping strategy. The protocol features an interesting eco-compatibility profile because of the use of 2-MeTHF as a solvent (more eco-friendly than other organic solvents) and n-hexyllithiumas a lithiating agent safer than other alkyllithium compounds. Several derivatives were prepared with different stereochemistry and substitution patterns. A number of selected derivatives, spanning a range of 5 log P units, were characterized for their lipophilicity through RP-HPLC. A good linear correlation,with a slope close to 1.0, was observed between the experimentally determined RP-HPLC lipophilicity parameters (log k’w) and calculated log P (clog P) values, whereas a systematic difference in absolute values between the chromatographic parameters and in silico lipophilicity descriptors can be attributed mainly to silanophilic interactions between the H-bond acceptor SO2 group and free silanol groups on silica-based C18 columns, which results in increased retention times.
2017
synthesis regiselectivity physicochemical characterization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/19942
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact