Background: After 2008 global economic crisis, Italian governments progressively reduced public healthcare financing. Describing the time trend of health outcomes and health expenditure may be helpful for policy makers during the resources' allocation decision making process. The aim of this paper is to analyze the trend of mortality and health spending in Italy and to investigate their correlation in consideration of the funding constraints experienced by the Italian national health system (SSN). Methods: We conducted a 20-year time-series study. Secondary data has been extracted from a national, institution based and publicly accessible retrospective database periodically released by the Italian Institute of Statistics. Age standardized all-cause mortality rate (MR) and health spending (Directly Provided Services - DPS, Agreed-Upon Services - TAUS, and private expenditure) were reviewed. Time trend analysis (1995-2014) through OLS and Multilayer Feed-forward Neural Networks (MFNN) models to forecast mortality and spending trend was performed. The association between healthcare expenditure and MR was analyzed through a fixed effect regression model. We then repeated MFNN time trend forecasting analyses on mortality by adding the spending item resulted significantly related with MR in the fixed effect analyses. Results: DPS and TAUS decreased since 2011. There was a mismatch in mortality rates between real and predicted values. DPS resulted significantly associated to mortality (p < 0.05). In repeated mortality forecasting analysis, predicted MR was found to be lower when considering the pre-constraints health spending trend. Conclusions: Between 2011 and 2014, Italian public health spending items showed a reduction when compared to prior years. Spending on services directly provided free of charge appears to be the financial driving force of the Italian public health system. The overall mortality was found to be higher than the predicted trend and this scenario may be partially attributable to the healthcare funding constraints experienced by the SSN.

Real and predicted mortality under health spending constraints in Italy: a time trend analysis through artificial neural networks

Golinelli, Davide;
2018-01-01

Abstract

Background: After 2008 global economic crisis, Italian governments progressively reduced public healthcare financing. Describing the time trend of health outcomes and health expenditure may be helpful for policy makers during the resources' allocation decision making process. The aim of this paper is to analyze the trend of mortality and health spending in Italy and to investigate their correlation in consideration of the funding constraints experienced by the Italian national health system (SSN). Methods: We conducted a 20-year time-series study. Secondary data has been extracted from a national, institution based and publicly accessible retrospective database periodically released by the Italian Institute of Statistics. Age standardized all-cause mortality rate (MR) and health spending (Directly Provided Services - DPS, Agreed-Upon Services - TAUS, and private expenditure) were reviewed. Time trend analysis (1995-2014) through OLS and Multilayer Feed-forward Neural Networks (MFNN) models to forecast mortality and spending trend was performed. The association between healthcare expenditure and MR was analyzed through a fixed effect regression model. We then repeated MFNN time trend forecasting analyses on mortality by adding the spending item resulted significantly related with MR in the fixed effect analyses. Results: DPS and TAUS decreased since 2011. There was a mismatch in mortality rates between real and predicted values. DPS resulted significantly associated to mortality (p < 0.05). In repeated mortality forecasting analysis, predicted MR was found to be lower when considering the pre-constraints health spending trend. Conclusions: Between 2011 and 2014, Italian public health spending items showed a reduction when compared to prior years. Spending on services directly provided free of charge appears to be the financial driving force of the Italian public health system. The overall mortality was found to be higher than the predicted trend and this scenario may be partially attributable to the healthcare funding constraints experienced by the SSN.
2018
Health expenditures
Mortality rate
Neural network models
Time trend analysis
Adolescent
Adult
Aged
Child
Child
Preschool
Delivery of Health Care
Female
Forecasting
Health Expenditures
Healthcare Financing
Humans
Infant
Infant
Newborn
Italy
Male
Middle Aged
Mortality
Neural Networks (Computer)
Public Health
Regression Analysis
Retrospective Studies
Young Adult
Health Policy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/19221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact