Candida albicans, in specific conditions, is responsible of severe invasive systemic candidiasis that are related to its ability to produce biofilm on biological and artificial surfaces. Many studies reported the role of iron in fungal growth and virulence and the ability of metal chelating agents to interfere with C. albicans metabolism, virulence and biofilm formation. Here we report the activity of 3-hydroxy-1,2-dimethyl-4(1H)-pyridinone (deferiprone) derivatives against C. albicans planktonic cells and biofilm. Some of the studied compounds (2b and 3b) were able to chelate Fe(III) and Cu(II), and showed an interesting activity on planktonic cells (MIC50 of 32 g/mL and 16 g/mL respectively) and on biofilm formation (BMIC50 of 32 g/mL and 16 g/mL respectively) in cultured ATCC 10231 C. albicans; this activity was reduced, in a concentration dependent way, by the addition of Fe(III) and Cu(II) to the culture media. Furthermore, the most active compound 3b showed a low toxicity on Galleria mellonella larvae.

Design, synthesis and biological evaluation of a series of iron and copper chelating deferiprone derivatives as new agents active against Candida albicans

Antonella Messore;
2021-01-01

Abstract

Candida albicans, in specific conditions, is responsible of severe invasive systemic candidiasis that are related to its ability to produce biofilm on biological and artificial surfaces. Many studies reported the role of iron in fungal growth and virulence and the ability of metal chelating agents to interfere with C. albicans metabolism, virulence and biofilm formation. Here we report the activity of 3-hydroxy-1,2-dimethyl-4(1H)-pyridinone (deferiprone) derivatives against C. albicans planktonic cells and biofilm. Some of the studied compounds (2b and 3b) were able to chelate Fe(III) and Cu(II), and showed an interesting activity on planktonic cells (MIC50 of 32 g/mL and 16 g/mL respectively) and on biofilm formation (BMIC50 of 32 g/mL and 16 g/mL respectively) in cultured ATCC 10231 C. albicans; this activity was reduced, in a concentration dependent way, by the addition of Fe(III) and Cu(II) to the culture media. Furthermore, the most active compound 3b showed a low toxicity on Galleria mellonella larvae.
2021
Deferiprone
metal chelation
Candida albicans
biofilm
galleria mellonella
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/19122
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact