We discovered a series of azole antifungal compounds as effective antiprotozoal agents. They displayed promising inhibitory activities within the micromolar-submicromolar range against P. falciparum, L. donovani, and T. b. rhodesiense. Moreover, most of such compounds showed excellent nanomolar IC50against T. cruzi, showing also very low cytotoxicity. Discussion of structure-activity relationships and biological data for these compounds are provided against the different parasites. To assess the mechanism of action against T. cruzi we proved that the most potent compounds (3b, 3j-l) inhibited the T. cruzi CYP51. Moreover, the most active derivative 3j dramatically reduced parasitemia in T. cruzi mouse model without acute toxicity.
Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents
Francesco Saccoliti;Antonella Messore;
2018-01-01
Abstract
We discovered a series of azole antifungal compounds as effective antiprotozoal agents. They displayed promising inhibitory activities within the micromolar-submicromolar range against P. falciparum, L. donovani, and T. b. rhodesiense. Moreover, most of such compounds showed excellent nanomolar IC50against T. cruzi, showing also very low cytotoxicity. Discussion of structure-activity relationships and biological data for these compounds are provided against the different parasites. To assess the mechanism of action against T. cruzi we proved that the most potent compounds (3b, 3j-l) inhibited the T. cruzi CYP51. Moreover, the most active derivative 3j dramatically reduced parasitemia in T. cruzi mouse model without acute toxicity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.