Objective: This study aims at investigating how AI-based transformers can support researchers in designing and conducting an epidemiological study. To accomplish this, we used ChatGPT to reformulate the STROBE recommendations into a list of questions to be answered by the transformer itself. We then qualitatively evaluated the coherence and relevance of the transformer's outputs. Study design: Descriptive study. Methods: We first chose a study to be used as a basis for the simulation. We then used ChatGPT to transform each STROBE checklist's item into specific prompts. Each answer to the respective prompt was evaluated by independent researchers in terms of coherence and relevance. Results: The mean scores assigned to each prompt were heterogeneous. On average, for the coherence domain, the overall mean score was 3.6 out of 5.0, and for relevance it was 3.3 out of 5.0. The lowest scores were assigned to items belonging to the Methods section of the checklist. Conclusions: ChatGPT can be considered as a valuable support for researchers in conducting an epidemiological study, following internationally recognized guidelines and standards. It is crucial for the users to have knowledge on the subject and a critical mindset when evaluating the outputs. The potential benefits of AI in scientific research and publishing are undeniable, but it is crucial to address the risks, and the ethical and legal consequences associated with its use.

A step-by-step researcher's guide to the use of an AI-based transformer in epidemiology: an exploratory analysis of ChatGPT using the STROBE checklist for observational studies

Golinelli, Davide
2023-01-01

Abstract

Objective: This study aims at investigating how AI-based transformers can support researchers in designing and conducting an epidemiological study. To accomplish this, we used ChatGPT to reformulate the STROBE recommendations into a list of questions to be answered by the transformer itself. We then qualitatively evaluated the coherence and relevance of the transformer's outputs. Study design: Descriptive study. Methods: We first chose a study to be used as a basis for the simulation. We then used ChatGPT to transform each STROBE checklist's item into specific prompts. Each answer to the respective prompt was evaluated by independent researchers in terms of coherence and relevance. Results: The mean scores assigned to each prompt were heterogeneous. On average, for the coherence domain, the overall mean score was 3.6 out of 5.0, and for relevance it was 3.3 out of 5.0. The lowest scores were assigned to items belonging to the Methods section of the checklist. Conclusions: ChatGPT can be considered as a valuable support for researchers in conducting an epidemiological study, following internationally recognized guidelines and standards. It is crucial for the users to have knowledge on the subject and a critical mindset when evaluating the outputs. The potential benefits of AI in scientific research and publishing are undeniable, but it is crucial to address the risks, and the ethical and legal consequences associated with its use.
2023
AI
ChatGPT
Epidemiology
Ethics
Legal
Methodology
Public Health
STROBE
Scientific research
Transformers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/19048
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact