Anthemis cretica subsp. petraea (Ten.) Greuter is a plant belonging to the Asteraceae family and endemic of central Italy. In this paper, the first analysisof the ethanolic fraction of samples collected in the Majella National Park is reported. Seven compounds were isolated and identified namely parthenolide (1), 9α-acetoxyparthenolide (2), tamarixetin (3), 7-hydroxycoumarin (4), 4'-hydroxyacetophenone (5), leucanthemitol (conduritol F) (6),and proto-quercitol (7). Isolation of the compounds was achieved by means ofcolumn chromatography (CC), while their identification was achieved through spectroscopic and spectrometric techniques. The presence of these compounds is of great relevance. Compounds 1 and 2 are chemosystematic markers of the family, thus confirming the correct botanical classification of the species. Conversely, compounds 3, 5,and 7 were identified for the first time in the species and, instead, confirm the tendency of endemic entities to develop characteristic metabolite patterns in respect to cosmopolite species. Moreover, the presence of compounds 6 and 7 has ecologic implications and may be linked to this taxon’s adaption to dry environments. The production of these osmolytes may, in fact, represent the reason why this species is able to survive in extreme conditions of aridity. Lastly, from a medicinal standpoint, the isolated compounds are endowed with interesting biological activities and may justify, on a molecular base, the widespread traditional uses of the Anthemis species, as well as a basis for the use ofthe subspecies petraea.

Secondary metabolites with ecologic and medicinal implications in Anthemis cretica subsp. petraea from Majella National Park

FREZZA, CLAUDIO;
2016-01-01

Abstract

Anthemis cretica subsp. petraea (Ten.) Greuter is a plant belonging to the Asteraceae family and endemic of central Italy. In this paper, the first analysisof the ethanolic fraction of samples collected in the Majella National Park is reported. Seven compounds were isolated and identified namely parthenolide (1), 9α-acetoxyparthenolide (2), tamarixetin (3), 7-hydroxycoumarin (4), 4'-hydroxyacetophenone (5), leucanthemitol (conduritol F) (6),and proto-quercitol (7). Isolation of the compounds was achieved by means ofcolumn chromatography (CC), while their identification was achieved through spectroscopic and spectrometric techniques. The presence of these compounds is of great relevance. Compounds 1 and 2 are chemosystematic markers of the family, thus confirming the correct botanical classification of the species. Conversely, compounds 3, 5,and 7 were identified for the first time in the species and, instead, confirm the tendency of endemic entities to develop characteristic metabolite patterns in respect to cosmopolite species. Moreover, the presence of compounds 6 and 7 has ecologic implications and may be linked to this taxon’s adaption to dry environments. The production of these osmolytes may, in fact, represent the reason why this species is able to survive in extreme conditions of aridity. Lastly, from a medicinal standpoint, the isolated compounds are endowed with interesting biological activities and may justify, on a molecular base, the widespread traditional uses of the Anthemis species, as well as a basis for the use ofthe subspecies petraea.
2016
adaptation
secondary metabolites
diterpenoids
flavonoids
cyclitols
abiotic stress
traditional uses
chemotaxonomy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14085/17679
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact