Urinary mercury (Hg) levels are suitable to assess long-term exposure to both elemental and inorganic Hg. In this study, the urinary Hg levels of 250 children (aged 6–11 years) from three areas with different anthropogenic impacts in the Rieti province, central Italy, were assessed. The Hg concentrations were in the range of 0.04–2.18 µg L−1 with a geometric mean equal to 0.18 µg L−1 [95% confidence interval (CI), 0.17–0.20 µg L−1] or 0.21 µg g−1 creatinine (95% CI, 0.19–0.23 µg g−1 creatinine), and a reference value calculated as 95th percentile of 0.53 µg L−1 (95% CI, 0.44–0.73 µg L−1) or 0.55 µg g−1 creatinine (95% CI, 0.50–0.83 µg g−1 creatinine). In all cases, urinary Hg data were below the HBM-I values (7 µg L−1 or 5 µg g−1 creatinine) established for urine, while the 95th percentile was above the German Human Biomonitoring Commission’s RV95 (0.4 µg L−1) set for children without amalgam fillings. A significant correlation (p < 0.05) was found between creatinine-corrected results and residence area, with higher urinary Hg levels in children living in the industrial area. Multiple linear regression analysis showed that creatinine was the main predictor of urinary Hg.
Urinary mercury levels and predictors of exposure among a group of Italian children
Mattei V.;
2020-01-01
Abstract
Urinary mercury (Hg) levels are suitable to assess long-term exposure to both elemental and inorganic Hg. In this study, the urinary Hg levels of 250 children (aged 6–11 years) from three areas with different anthropogenic impacts in the Rieti province, central Italy, were assessed. The Hg concentrations were in the range of 0.04–2.18 µg L−1 with a geometric mean equal to 0.18 µg L−1 [95% confidence interval (CI), 0.17–0.20 µg L−1] or 0.21 µg g−1 creatinine (95% CI, 0.19–0.23 µg g−1 creatinine), and a reference value calculated as 95th percentile of 0.53 µg L−1 (95% CI, 0.44–0.73 µg L−1) or 0.55 µg g−1 creatinine (95% CI, 0.50–0.83 µg g−1 creatinine). In all cases, urinary Hg data were below the HBM-I values (7 µg L−1 or 5 µg g−1 creatinine) established for urine, while the 95th percentile was above the German Human Biomonitoring Commission’s RV95 (0.4 µg L−1) set for children without amalgam fillings. A significant correlation (p < 0.05) was found between creatinine-corrected results and residence area, with higher urinary Hg levels in children living in the industrial area. Multiple linear regression analysis showed that creatinine was the main predictor of urinary Hg.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.